3.530 \(\int \frac{(a+b x^2)^{3/2} (A+B x^2)}{x^4} \, dx\)

Optimal. Leaf size=119 \[ -\frac{\left (a+b x^2\right )^{3/2} (3 a B+2 A b)}{3 a x}+\frac{b x \sqrt{a+b x^2} (3 a B+2 A b)}{2 a}+\frac{1}{2} \sqrt{b} (3 a B+2 A b) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3} \]

[Out]

(b*(2*A*b + 3*a*B)*x*Sqrt[a + b*x^2])/(2*a) - ((2*A*b + 3*a*B)*(a + b*x^2)^(3/2))/(3*a*x) - (A*(a + b*x^2)^(5/
2))/(3*a*x^3) + (Sqrt[b]*(2*A*b + 3*a*B)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/2

________________________________________________________________________________________

Rubi [A]  time = 0.0472946, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {453, 277, 195, 217, 206} \[ -\frac{\left (a+b x^2\right )^{3/2} (3 a B+2 A b)}{3 a x}+\frac{b x \sqrt{a+b x^2} (3 a B+2 A b)}{2 a}+\frac{1}{2} \sqrt{b} (3 a B+2 A b) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)^(3/2)*(A + B*x^2))/x^4,x]

[Out]

(b*(2*A*b + 3*a*B)*x*Sqrt[a + b*x^2])/(2*a) - ((2*A*b + 3*a*B)*(a + b*x^2)^(3/2))/(3*a*x) - (A*(a + b*x^2)^(5/
2))/(3*a*x^3) + (Sqrt[b]*(2*A*b + 3*a*B)*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]])/2

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{3/2} \left (A+B x^2\right )}{x^4} \, dx &=-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3}-\frac{(-2 A b-3 a B) \int \frac{\left (a+b x^2\right )^{3/2}}{x^2} \, dx}{3 a}\\ &=-\frac{(2 A b+3 a B) \left (a+b x^2\right )^{3/2}}{3 a x}-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3}+\frac{(b (2 A b+3 a B)) \int \sqrt{a+b x^2} \, dx}{a}\\ &=\frac{b (2 A b+3 a B) x \sqrt{a+b x^2}}{2 a}-\frac{(2 A b+3 a B) \left (a+b x^2\right )^{3/2}}{3 a x}-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3}+\frac{1}{2} (b (2 A b+3 a B)) \int \frac{1}{\sqrt{a+b x^2}} \, dx\\ &=\frac{b (2 A b+3 a B) x \sqrt{a+b x^2}}{2 a}-\frac{(2 A b+3 a B) \left (a+b x^2\right )^{3/2}}{3 a x}-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3}+\frac{1}{2} (b (2 A b+3 a B)) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )\\ &=\frac{b (2 A b+3 a B) x \sqrt{a+b x^2}}{2 a}-\frac{(2 A b+3 a B) \left (a+b x^2\right )^{3/2}}{3 a x}-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3}+\frac{1}{2} \sqrt{b} (2 A b+3 a B) \tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a+b x^2}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0767204, size = 83, normalized size = 0.7 \[ \frac{\sqrt{a+b x^2} (-3 a B-2 A b) \, _2F_1\left (-\frac{3}{2},-\frac{1}{2};\frac{1}{2};-\frac{b x^2}{a}\right )}{3 x \sqrt{\frac{b x^2}{a}+1}}-\frac{A \left (a+b x^2\right )^{5/2}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)^(3/2)*(A + B*x^2))/x^4,x]

[Out]

-(A*(a + b*x^2)^(5/2))/(3*a*x^3) + ((-2*A*b - 3*a*B)*Sqrt[a + b*x^2]*Hypergeometric2F1[-3/2, -1/2, 1/2, -((b*x
^2)/a)])/(3*x*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 168, normalized size = 1.4 \begin{align*} -{\frac{A}{3\,a{x}^{3}} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}-{\frac{2\,Ab}{3\,{a}^{2}x} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}+{\frac{2\,{b}^{2}Ax}{3\,{a}^{2}} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{{b}^{2}Ax}{a}\sqrt{b{x}^{2}+a}}+A{b}^{{\frac{3}{2}}}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ) -{\frac{B}{ax} \left ( b{x}^{2}+a \right ) ^{{\frac{5}{2}}}}+{\frac{bBx}{a} \left ( b{x}^{2}+a \right ) ^{{\frac{3}{2}}}}+{\frac{3\,bBx}{2}\sqrt{b{x}^{2}+a}}+{\frac{3\,Ba}{2}\sqrt{b}\ln \left ( x\sqrt{b}+\sqrt{b{x}^{2}+a} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)*(B*x^2+A)/x^4,x)

[Out]

-1/3*A*(b*x^2+a)^(5/2)/a/x^3-2/3*A*b/a^2/x*(b*x^2+a)^(5/2)+2/3*A*b^2/a^2*x*(b*x^2+a)^(3/2)+A*b^2/a*x*(b*x^2+a)
^(1/2)+A*b^(3/2)*ln(x*b^(1/2)+(b*x^2+a)^(1/2))-B/a/x*(b*x^2+a)^(5/2)+B*b/a*x*(b*x^2+a)^(3/2)+3/2*B*b*x*(b*x^2+
a)^(1/2)+3/2*B*b^(1/2)*a*ln(x*b^(1/2)+(b*x^2+a)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.59618, size = 402, normalized size = 3.38 \begin{align*} \left [\frac{3 \,{\left (3 \, B a + 2 \, A b\right )} \sqrt{b} x^{3} \log \left (-2 \, b x^{2} - 2 \, \sqrt{b x^{2} + a} \sqrt{b} x - a\right ) + 2 \,{\left (3 \, B b x^{4} - 2 \,{\left (3 \, B a + 4 \, A b\right )} x^{2} - 2 \, A a\right )} \sqrt{b x^{2} + a}}{12 \, x^{3}}, -\frac{3 \,{\left (3 \, B a + 2 \, A b\right )} \sqrt{-b} x^{3} \arctan \left (\frac{\sqrt{-b} x}{\sqrt{b x^{2} + a}}\right ) -{\left (3 \, B b x^{4} - 2 \,{\left (3 \, B a + 4 \, A b\right )} x^{2} - 2 \, A a\right )} \sqrt{b x^{2} + a}}{6 \, x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^4,x, algorithm="fricas")

[Out]

[1/12*(3*(3*B*a + 2*A*b)*sqrt(b)*x^3*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + 2*(3*B*b*x^4 - 2*(3*B*a
 + 4*A*b)*x^2 - 2*A*a)*sqrt(b*x^2 + a))/x^3, -1/6*(3*(3*B*a + 2*A*b)*sqrt(-b)*x^3*arctan(sqrt(-b)*x/sqrt(b*x^2
 + a)) - (3*B*b*x^4 - 2*(3*B*a + 4*A*b)*x^2 - 2*A*a)*sqrt(b*x^2 + a))/x^3]

________________________________________________________________________________________

Sympy [A]  time = 5.48485, size = 202, normalized size = 1.7 \begin{align*} - \frac{A \sqrt{a} b}{x \sqrt{1 + \frac{b x^{2}}{a}}} - \frac{A a \sqrt{b} \sqrt{\frac{a}{b x^{2}} + 1}}{3 x^{2}} - \frac{A b^{\frac{3}{2}} \sqrt{\frac{a}{b x^{2}} + 1}}{3} + A b^{\frac{3}{2}} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )} - \frac{A b^{2} x}{\sqrt{a} \sqrt{1 + \frac{b x^{2}}{a}}} - \frac{B a^{\frac{3}{2}}}{x \sqrt{1 + \frac{b x^{2}}{a}}} + \frac{B \sqrt{a} b x \sqrt{1 + \frac{b x^{2}}{a}}}{2} - \frac{B \sqrt{a} b x}{\sqrt{1 + \frac{b x^{2}}{a}}} + \frac{3 B a \sqrt{b} \operatorname{asinh}{\left (\frac{\sqrt{b} x}{\sqrt{a}} \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)*(B*x**2+A)/x**4,x)

[Out]

-A*sqrt(a)*b/(x*sqrt(1 + b*x**2/a)) - A*a*sqrt(b)*sqrt(a/(b*x**2) + 1)/(3*x**2) - A*b**(3/2)*sqrt(a/(b*x**2) +
 1)/3 + A*b**(3/2)*asinh(sqrt(b)*x/sqrt(a)) - A*b**2*x/(sqrt(a)*sqrt(1 + b*x**2/a)) - B*a**(3/2)/(x*sqrt(1 + b
*x**2/a)) + B*sqrt(a)*b*x*sqrt(1 + b*x**2/a)/2 - B*sqrt(a)*b*x/sqrt(1 + b*x**2/a) + 3*B*a*sqrt(b)*asinh(sqrt(b
)*x/sqrt(a))/2

________________________________________________________________________________________

Giac [B]  time = 1.14788, size = 279, normalized size = 2.34 \begin{align*} \frac{1}{2} \, \sqrt{b x^{2} + a} B b x - \frac{1}{4} \,{\left (3 \, B a \sqrt{b} + 2 \, A b^{\frac{3}{2}}\right )} \log \left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2}\right ) + \frac{2 \,{\left (3 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} B a^{2} \sqrt{b} + 6 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{4} A a b^{\frac{3}{2}} - 6 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} B a^{3} \sqrt{b} - 6 \,{\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} A a^{2} b^{\frac{3}{2}} + 3 \, B a^{4} \sqrt{b} + 4 \, A a^{3} b^{\frac{3}{2}}\right )}}{3 \,{\left ({\left (\sqrt{b} x - \sqrt{b x^{2} + a}\right )}^{2} - a\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)*(B*x^2+A)/x^4,x, algorithm="giac")

[Out]

1/2*sqrt(b*x^2 + a)*B*b*x - 1/4*(3*B*a*sqrt(b) + 2*A*b^(3/2))*log((sqrt(b)*x - sqrt(b*x^2 + a))^2) + 2/3*(3*(s
qrt(b)*x - sqrt(b*x^2 + a))^4*B*a^2*sqrt(b) + 6*(sqrt(b)*x - sqrt(b*x^2 + a))^4*A*a*b^(3/2) - 6*(sqrt(b)*x - s
qrt(b*x^2 + a))^2*B*a^3*sqrt(b) - 6*(sqrt(b)*x - sqrt(b*x^2 + a))^2*A*a^2*b^(3/2) + 3*B*a^4*sqrt(b) + 4*A*a^3*
b^(3/2))/((sqrt(b)*x - sqrt(b*x^2 + a))^2 - a)^3